PROTOCYTIDIUM GEN. NOV., A NEW ANOMALOCYSTITID MITRATE FROM THI: VICTORIAN LATEST ORDOVICIAN AND EVOLUTION OF THE ALLANICYTIDIDAE

MARCELLO RUTA AND PETER A. IELL

Ruta. M. \& Jell, P.A. 199900 30: Protectridium gen nov.. at new anamalocystatid mitrate from the Vietorian latest Ordovician and evolution of the Allanicy tididae. Acmoirs of the Queenstand Museum 43(1): 353-376. Brishanc. ISSN 0079-883.5.

Abstract

The anomalocystitid mituate Protacytidiun cllototere gen en sp. now. is described trom the uppermosi Ordovician Datraweil Gum Mudstone in central Vietoria Protoc yidium has: I) 12 plates on the convex surfice, with only 3 indistal row and the remaining 9 as in Emppouma; 2) remarkably asymetrical lateral and median orilice plates of plane-concave surface divided into a "thecal" portion lianmeng the body oritice and al "lip" projected distatly beyond the urilice: 3) much reduced plate B failing to contact right LOP; 4) narrow, elongate plate A sutured with proximal 2/3-3/4 of medial margin of lot intermediate lateral manginal plates: 5) shurt, slender, alnosi straight Ieft spine and longer. more robush, convex, sickle-shaped ngla spine; 6) cancellate to honeyconib-like stereon, often replaced by tadiating trabeculac near periphery of plates; 7) styloid traperoidal, bearing semicircular styluid blades with radiating trabeeulac: 8) proximal blade about hall as large as distal blade. Protocytidium is intermediate between Enoploura popet and the basal allanicytidiad Occultucyst/s kuencon. The Allanicytidiidae are reviewed in the light of this new lind. IC Protocytidium. thomalocystiidda, Allanicy rididilace, Bolindian, Victoria.

Murcello Rutu, Department of Pulacontology. The Nuthral Sfishory Mrusevm, C'romurd
 3.311), Soult Brisham +101, Australia; 10 Jtme 194s.

During field mapping of the Kilmore 1:50,000 sheet (Vandenberg, 1992), which incluted a study ol Ordovician/Silurian boundary sections in the Deep Creek and Ben Dhui Creek areas (Vandenberg et al., 1984), numerous specimens of a small mitrate were discovered at NMVPL660) in Ben Dhui Creek (Vandenberg et al., 1984, figs 1. 2A). This species has a combination of skeletal features making it transitional betwcen Enoplotura Wetherby, 1879 From the Middle to Late Ordovieian of North America (Caster, 1952: Parsley, 1991) and the allanicytidiid Occultozastis hoeneni Haude, 1995 from the Lower Devonian of Argentina. The new taxon is the oldest and only Ordovician member of the Allanicytididae. In this paper we describe and reconstruct the taxon. assess its phylogenetic position and discuss ils bearing on the origin and evolution of the Allanicytididae.

gLOLOGICAL SETTING

The material deseribed herein comes from NMVPL660 (Vandenberget al., 1984, fig. 2A. appendia 2). It is in the bed of Ben Dlmi Creek. 750 m N of the Wallan to Woodend road. about 10 km W of Wallan at AMG311740-58601360 un the Kilhore 1:50,000 sheet 7823-11 Scrics R 754.

Edition I-AAS (1979). It in in the type section ol the Dartawsit Guin Mudstone which consists of medium to thick bedded massive calcareons mudstone. The mudstone is black when liesh but surface exposures are usually decalcified. weathered and grey or green as at NMVPLGit). The associated launa. which is proserved in situ, includes the milobite Songxites durtancitensis (Campbell). the graptolite Climacograpmes ungustus Pemer and nautiloids. This is a thin unit (20 m in the type seetion) precisely dated by the widespread graptolite Climacograplus? extramdinurius (Soholevskaya) which ocenrs in the youngest Ordovician Zone at the top of the Bolindian Stage.

SYSTEMATIC PALAEONTOLOGY

Anatomical terminology and plate nomenclature (Appendix) Foilow Ruta (in press). Ruts \& Bartels (1998, Sie. SA, B3) and Ruta \& I J.ll (1999a,bec). Spectimens are housed in the Museum of Victoria, Melbourne (NMVP) wherein the locality is also registered (NMVPL). All photographic illustrations are of latex casts taken from decalcified moulds and whitened with ammonium chloride sublimate.

FTG. 1. Protocytidium elliottae gen. et sp. nov. A, inside of proximal part of convex surface and distal part of plano-concavesurface of NMVP100439, $\times 5 . \mathrm{B}, \mathrm{G}$, partial plano-concave surlace and detail of adjacent isolated spine (probably right spine) of NMVP100424, $\times 5$ and $\times 7$, respectively. C, fragment of marginal plate from plano-concave surface showing stereom fabric, NMVP100405, $\times 11$. D, partial plano-concave surface and appendage, NMVP100401, $\times 5.5, \mathrm{E}$, partial plano-concave surface of NMVP100415, $\times 9$. F, fragment of marginal plate from plano-concave surlace showing stereom fabric NMVP100400, $\times 11$,

Class STY LOPHORA Gill \& Caster, 1960 Order MITRATA Jaekel, 1918 Suborder ANOMALOCYSTITIDA Caster, 1952
Family ALLANICYTIDIIDAE Caster \& Gill, 1967

DIAGNOSIS (modified from Caster \& Gill, 1967; Caster, 1983; Haude, 1995; Ruta, in press). Median orifice plate (MOP) longer than each lateral orifice plate (LOP). Spines longer than distal margin of plano-coneave surface. Distal part of convex surface of 3 or, more frequently, 2 plates with transverse thickening along inside of their distal margins. Distal styloid blade inclined proximally, sometimes with lateral ear-like projections. Sharp, longitudinal keel on external surface of styloid, failing to reach free margin of proximal blade (only in basal allanicytidids). Proximal blade semicireular.

REMARKS. Ruta (in press) amended and expanded the diagnosis of the Allanicytidiidae, formalising Haude's (1995) proposal to include Occultocystis koeneni. As discussed below, some characters supporting the sister-group relationship between the new anomalocystitid and the Allanieytidiidae sensu Haude (1995) are diagnostic of the latter (Ruta, in press). Our diagnosis is, therefore more generalised than thosc of Haude (1995) and Ruta (in press) and aims to avoid the problem of defining the Allanicytidiidae mainly on the basis of the simplificd plating of the convex surface in the most derived representatives of the group (Caster, 1956. 1983; Caster \& Gill, 1967; Philip, 1981; Ruta \& Theron, 1997; Ruta \& Jell, 1999c). However, reversal of some of the characters listed above oecurs to some extent within the Allanicytidiidae.

Protocytidium gen. nov.
TYPE SPECIES. Protocytidium elliottae sp. nov.
ETYMOLOGY. Greek proto, the first and cytidium, a small box. Neuter.

DIAGNOSIS. Body subelliptical to pyrilorm. rarely subrectangular. Convex surface of 12 plates, with 3 in distal row. Medial and lateral orifice plates of plano-concave surface asymmetrical, divided into a 'thecal' portion framing the body orifice and a 'lip' projected distally beyond the orifice. Plate B reduced, not in contact with right lateral orifice plate. Plate A narrow, elongate. Left spine short, slender, almost straight; right spine longer, more robust,
convex, sickle-shaped. Stereom cancellate to honeycomb-like, often replaced by radiating trabeculae near periphery of plates. Styloid trapezoidal, with semicircular blades with radiating trabcculae; proximal blade c. $1 / 2$ as large as distal blade.
REMARKS. The phylogenetie position of this new genus is discussed after the specific treatment below but simple distinguishing features are as follows: it differs from all anomalocystitids in the arrangement of the median and lateral orifice plates of the plano-concave surface, shape of the spines and elongate plate A with tiny plate B. Enoplourc has 5 plates in the distal row on the convex surface, larger C21, different ornament and less expanded styloid. Occultocystis has C21 isolated from the proximal body margin, very few plates in the convex surface and C11 and C13 as marginal plates. Most of the advanced genera of the Allanicytidiidae are distinguished by having only C 1 and C 5 in the distal row on the convex surface. by having straight spines and more elaborate surface ornament.

Protocytidium elliottae sp. nov.
(Figs 1-14)
ETYMOLOGY. For Traccy Elliott of the Palaeontology Department at the Natural History Museum, London.

MATERIAL. Holotype: NMVPI00401. Paratypes: NMVP100390-100400, 100402-100403, 100405100406, 100408-100419, 100421-100436, 100438100439, 100487-100488 all from NMVPL660.

DIAGNOSIS. As for genus.
DESCRIPTION. EXTERNAL. Measurements. Holotype (Fig. 1D): 11 mm long, 6 mm wide. Largest specimen (Fig. 7C): 14 mm long, 7 mm wide.
Plano-concave surface (Figs 1A-B,D-E, 2B-D, 4A-B, 6D, 7A, D, 8A, 9B, IOD, 13A). Mostly flat, exeept for slightly raised lateral margins, with lateral marginal plates divided more or less equally into subhorizontal and vertical parts. Latcral body walls of uniform depth, except for rapid tapering near proximal and distal ends (Fig. 13C-E). PM usually 1.5 times as wide proximally as distally, with straight to concave latcral margins on either side of slight lateral projection just proximal to midlength, with proximal margin strongly embayed for insertion of appendage. PLM with subhorizontal part subtriangular, with convex lateral margin and straight or broadly coneave distal margin. 1LM as long as PLM,

FIG. 2. Protocytidiumelliottae gen et sp nov. A, distal view of distolateral comer of body NMVP100391, $\times 12$. B, partial plano-concave surface of NMVP100397, $\times 10 . \mathrm{C}$, plano-concave surface incomplete distally. NMVP100410, $\times 10$. , partial plano-concave surface of NMVP100403, $\times 7$.

FIG. 3. Protocyidium elliotage gen et sp. nov. \wedge, convex surface ofNMVP $100488, \times 7$. B, distolateral corner of mostly disarticulated plano-concave surface of NMVP100391, $\times 11.5 \mathrm{C}$, partial proximal convex surface with inside of plano-concave surface in background, NMVP100390, $\times 6$. D, inside of plano-concave surface with C 21 still in position and with abapical surface of styloid in lower right, NMVP100417, $\times 11.5$.

FIG $\&$ Protocyidimu ellioftae gen. et sp. nov. A proximal appendage and partial plano-concuve surface of NMVP100396, $\times 8$. B, proximal plano-concase surface of NMVPIOM418, $\times 10$. C. inside of plano-concave surfice of NMVP100413, $\times 12$.
subrectangular, with medial margin of right 1LM sigmoidal and medial margin of left ILM similarly sigmoidal distal to its junction with the A-C suture and proximally straight, with lateral and distal margins straight. DLM as long as ILM, subrectangular to subtrapezoidal, with shallow distal surface deepening laterally, with subcentral tubercle for spine articulation. LOP and MOP remarkably asymmetrical, at least twice as long as wide, divided into proximal $2 / 3$ articulated with rest of plano-concave surface, and distal $1 / 3$ projecting beyond distal margin of transverse orifice, usually giving rise to irregular process. Irregular gaps between distal parts of adjacent margins of orifice plates. Right LOP generally slightly shorter and narrower than left LOP or MOP.

Plate B subtrapezoidal (based on shape of available plate margins), sutured to left LOP, MOP, A and C. Plate A at least 5 times longer than wide, oblique to longitudinal body axis, sometimes remarkably shortencd, with medial margin either gently convex or strongly convex in distal 1/2 and gently concave to straight in proximal $1 / 2$, with pointed proximal wedged between C and lcft ILM. Plate C widening proximally, in contact with MOP.
Convex surface. All plates except C21 and C3 arranged in pairs (indicated by plate margins and by mirror image arrangement of medial and latcral plates sutured with C20-C22); distal 1/3 of convex surface invariably disrupted and poorly preserved.

C21 with width 40% of length, shield-shaped. with slightly convex longitudinal and transverse profiles; margins very gently convex except straight to weakly concave proximal margin, extreme proximolateral section also with short concave section, producing proximolateral projection. C20 and C22 subtrapezoidal, with maximum width proximally; transverse profile of plates strongly arcuate, espccially near their proximo-lateral angle, with thickening immediately distal to proximal margin, with blunt proximo-lateral angles, with medio-distal angles proximal to latero-distal angles. Cl 5 and C19 irregularly pentagonal, with greatest dimension at 45° to body axis, with proximo-medial margins in contact with latero-distal margins of C21, with sigmoidal medio-distal margins. C11 and C13 longer than wide, irregularly hexagonal, sutured along straight median suture. C 6 and C 9 subtrapezoidal, smallest plates of convex surface, lateral to C11 and CI3, respectively.

Distal $1 / 3$ of convex surface poorly preserved in available material, but apparently consisting of 3 large plates in a transverse row $(=\mathrm{C} 1, \mathrm{C} 3$ and C5 based on comparison with Enoploura and Occultocystis). C5 (Fig. 3A) subrectangular, slightly longer than wide. C3 slightly longer than C5, subpentagonal.
Body stereom and sculpture. External surface of coarse stercomic fabric forming radial pattern on each plate. Terrace-like ridges and riblets absent. Stereom of thick, generally straight, sometimes bifurcating trabeculae often connected by irregularly spaced. short transverse bar-like connections; trabeculae and connections delimit deep pits and become more irrcgular and randomly branching near plate margins, where the pits are smaller, more numerous and polygonal. Trabeculae of proximal 1/2 of convex surface generally thicker than elsewhere.
C20-C22 (Figs 3A,C-D, 5C) with trabeculae almost parallel to each other, rarely bifurcating, gently arcuate or straight ncar lateral and medial margins of C20 and C22, becoming confluent near centre of proximal $1 / 2$ of external surface of both plates, where they become slightly thicker and irregularly sinuous, with trabeculae on distal 1/2 thinner, subparallel to body axis, converging to centre of plates proximally. C21 with broadly arcuate trabeculae separated by granular fabric on proximal $2 / 3$, with distal trabeculae straight, bifurcating, in fan-like arrangement. Remaining body plates with gradual changes in stereom structure from centre to periphery (Figs 1A-B,D-E, 2C-D, 4B, 7A-B,D, 8A-C, 9B, 10D); centre compact or honeycomb-like, with short. anastomosing trabeculae; more peripheral stcreom of elongate trabeculae with transverse connections; surface with cancellate or honeycomb-like fabric proportional to plate size. Orifice plates with shallow pits and poorly defined, flat-topped trabeculae or coarse and without obvious surface pattern. Proximo-distally elongate trabeculae near proximal and distal margins of PLM, ILM and DLM (Fig. IF-G). External surface of A and B (Fig. 1D) with large, widely spaced polygonal pits delimited by thin trabcculac. PM with honeycomb fabric, with radiating peripheral trabeculae, cspecially along distal margins.
Spines. Left spine straight or gently convex externally, round in cross-section, with clavate proximal end, with hemispherical articular surface, tapering distally, with blunt terminus. Right spine slightly longer and twice as wide as left spine, sickle-shaped, flattened except for

FGG S. Protocytidimm dellionae gen et sp. nov. A. sty foid and proximal part of plano-concave surface of NMV1'100424, \times S. B, inside of plano-concave suffice of NMVP1 $00423, \times 12$. C, partal conver sulace with distal row removed to show inside of orilice plates of NMVPIou39s, 12 . D. proximal appendage and proxmal planto-concave surface of $\mathrm{NMVP}^{3} 100390.12$

I.IG. 6. Protocridium efliottae gen et sp . nov \wedge. inside of plano-concave surface of disarticulater NMVP100398. 又 8 B styloidofNMVP1004.30, 12. C inside of plano-concavesurlace of NMVP100487, 7 . D. plano-concave surface of NMVP10(1394. $\times 9$

FIG. 7. Protocytidium elliottae gen. et Sp. nov. A plano-concavesurface showing orificeplates of NMVP100402. :10. B, proximal parts of plano-concave surface and appendage of NMVP100414, $\times 10$. C interior of plano-concave sufface but with proximal part concealed by C20-C22 still in place of convex surface, NMVP100403, $\times 7$. D plano-concave surface with orifice plates intact, NMVP1(0)395, $\times 9$.
being conical distally, with sharp lateral and blunt medial margins, tapering distally to point, with subconical articular projection with 2 lacets separated from short subcylindrical region by poorly pronounced ridge, with stcreom of minute, irregular, shallow pits separated by coarscly granular to compact texture.
INTERNAL. Plano-concave surface. Internal surface of orifice plates divided into 2 unequal parts and different depths by transverse, distally concave thickening (Figs 7C, 8D, 9D, 11D, 12D). Internal surface of Icft latero-distal anglc of body occupicd by subtriangular arca straddling suture between left DLM and left LOP and medial to tubercle for spine insertion on left DLM. Proximo-latcral $1 / 2$ of subtriangular area slightly dceper and more raised than medio-distal $1 / 2$ and delimited laterally and proximally by 2 ridges, continuing distally on internal surface of left LOP where the proximal, thicker ridge (pr in Fig. 12A) almost parallels the body axis, with the thinner ridge (lar in Fig. 12A) widening rapidly in its distal $1 / 2$ before giving rise to thickened lateral margin of internal surface of left LOP, with central part of subtriangular area occupicd by pit (p in Fig. 12A). Proximal and lateral ridges merging and continuing as a low sinuous ridge (lr in Fig. 12A) coinciding with junction between subhorizontal and vertical parts of platc. Distal 1/4 of low ridge with triangular lateral process (lp in Fig. 12A) partially delimiting shallow subelliptical area (sa in Fig. 12A). Low ridge of right side apparcontly fading gradually distally near modio-distal angle of internal surface of right 1LM, immedialely lateral to point where the oblique septum (sce bclow) straddles the suture betwcen C and right DLM and abruptly changes direction. Oblique septum (se in Fig. 12C) with asymmetrical transverse section running from distal right angle to proximal left angle of inside of plano-concave surface (Figs 3C-D, 4C, 5B, $6 \mathrm{~A}, \mathrm{C}, 7 \mathrm{C}, ~ 8 \mathrm{D}, 9 \mathrm{~A}, \mathrm{C}-\mathrm{D}, 10 \mathrm{C}, 11 \mathrm{~A}, 12 \mathrm{C}$), with proximal $1 / 3$ straight or gently convex to left, with proximal end merging into left scutula (sc in Fig. 12C). Left scutula transversely elongate (Figs 3D, 6A,C, 9C). Straight, transverse ridge (tr in Fig. 12C) (sensu Ruta \& Jell, 1999a) delimited proximally by transverse furrow (tf in Fig. 12C). Second ridge, probably homologous with the proximal ridge of Ruta \& Jell (1999a) (dr in Fig. 12 C), running from left scutula to lateral margin of left PM, bending rapidly latero-distally and continuing on internal surface of left PLM as the most proximal part of the low ridge described above (lr in Fig. 12C). Apophyseal horns (ah in

Fig. 12C) gently convex in transverse section, with straight proximal margin and gently convex distal margin in plan view, with medial ends separated by small gap (Fig. 9C). Scptum (sc) on plate C divided into a straight proximal 1/2 and narrower, gently convex to the right or simuous distal half. Distal $1 / 3$ of scptum gently convex to the right, proximo-distal on insidc of right DLM. Distally, septum has T-shaped birfucation near latero-distal angle of right DLM.
Convex surface. Inside of convex surface poorly preserved (Figs 1A, 11E). Co-operculum cup-like, just distal to midpoint of proximal margin of C20 and C22, with irregular rim, thicker in its distal $1 / 2$ than in its proximal $1 / 2$, with narrow slit at proximo-mcdial angle. Low oblique crest running medio-distally from medio-distal angle of co-opercular rim (Fig. 1A). C21 with weak struts radiating from point proximal to midlength (Fig. IA) and reaching its proximal margin, with proximo-distally elongate, low, poorly defined ridge centrally (Fig. IIE), gradually disappearing distally.
Stereom. Inside of plano-concave surface with minute pits or, more frequently, honeycomb-likc. Plate peripherics usually with minute pits sometimes very shallow and surrounded by poorly dcfined trabeculae. Proximal part of MOP and LOP compact or coarsely fibrillar, rarely with shallow, subelliptical pits and small lumps; distal part of orifice plates coarsely granular or with radiating and often bifurcating trabeculae separated by deep furrows (Figs 7C, 9D, 11D). Stereom of inside of convex surface cancellate to coarsely granular, of low anastomosing trabeculae separated by shallow elongate pits (Fig. I1E).
APPENDAGE. Proximal part of 6-7 tetramerous overlapping rings; ring plates of uniform width, in sutured contact mid-longitudinally and laterally. Ring plates on plano-concave side of body subrectangular, convex in transversc section, with straight proximal margins, with distal margins gently convex or sinuous and slightly thickened. Ring plates on convex side narrower, with straight proximal and distal margins. Styloid 3 times as wide as long, maximum width at distal blade, with low median keel. Proximal blade with scmicircular, blunt frce margin and flat to gently convex distal surface. Distal blade proximally recumbent, with semicircular sharp free margin, with flat surfaces, with proximal surface sometimes divided into 2 slightly convex halves (Figs 2B, 7B). Abapical surfacc of styloid (Figs 3D, 12E) gently concave

FTG. S. Protoculdium elliotae gen. at sp not. A. proximal plano-concave surface and appendage plates of NMVP100413, ャ7. B proximal plates of plano-concave surface and parts of appendage of NMVIP10 $391, \times 6$ C. PM plates over inside of convex surfece plates ot NMVP100419.< 12 D, inside of plano-concavesurface of NMVPI(00401, *12.

ITG 9. Protocytidium ellioltae gen. et sp. nov. A, inside of plano-concave surface and orifice plates of NMVP100392, $\times 7$. B, partal plano-concavesurface of NMVP100409. $\times 12$. C, inside of plano-concave surface of NMVP10 $0418, \times 12$. D, detail of distal part of Fig. SD, NMVP100401. $\times 15$.

 proximal appendage and plano-concave surface of NMVPI())430, \& 8 , inside of plan-concase surlace of NMV1" 101349 .12 1): partial conven surface ol NMVP100416. 212.
in transverse section, with slightly raised proximal and distal margins, with straight central longitudinal furrow (sf in Fig. 12E) along proximal $2 / 3$ of styloid, of uniform depth and width, shallowing to rounded proximal termination and distally in subelliptical pit (sp in Fig. 12E), with proximal margin slightly coneave medially. Arlicular surface (Fig. 12E) with 4 irregular pits laterally on left and right.
Distal part. Largest observed number of ossieles 11 (Fig, 1D), artieulated with paired plates. Ossicles only slightly higher than wide, triangular in cross-scction (Fig. 10C), diminishing in size distally; lateral surfaces flat or gently convex in abapical $1 / 2$, slightly depressed in apical 1/2; apical margin blunt, sloping distally, with blunt bulbous apex. Apex developed mainly on 3 or 4 most proximal ossicles, decreasing rapidly distally, absent on distal ossicles. Artieular margins of ossicles along zig-zag line, divided into smaller, distal portion in contact with plate of next distal segment and larger, proximal part sutured with plate of corresponding segment. Plates subrectangular, partly overlapping cach other proximo-distally. Articular margin of plates thicker proximally, gently tapering distally.
Stereom. Appendage externally with shallow irrcgular pits. Tetramerous rings and free margins of styloid blades sometimes coarsely granular. Radiating trabeculae on both styloid blades.

REMARKS. Material is often considerably disrupted and partly deformed. Very few speeimens approach completeness, and the distal part of the convex surface is invariably damaged or missing. In some cases, the body plates are disarticulated but lie close to each other so that their mutual spatial relationships are almost unchanged. Preservation of the plano-concave surface is generally better than that of the convex surface, but the preeise arrangement of the orifice plates can be deduced only by combining information from different individuals. In some specimens, both spines are visible and in the holotype, these are found in close proximity to the body, although only the left spine is prescrved artieulated with the toroidal projection on the distal surface of left DLM. The appendage is always incompletely prescrved, although isolated ring plates of the proximal part, the abapical surfaec of the styloid and external ossicle morphology can be rcconstructed.

Despite tectonic deformation, it is possible to distinguish 2 morphological variants.

Homologous plates in individuals belonging 10 these variants show slightly different length/width ratios (e.g. PLM, ILM and DLM) and, sometimes, remarkably different shapes (e.g. A and C). The possibility that the 2 variants represent the effects of compression of the body along different directions cannot be entirely ruled out. Intraspecific and ontogenetic variation or sexual dimorphism could also be responsible. Similar problems wore discussed by Ruta \& Bartels (1998) in their analysis of tectonic deformation in Rhenocystis latipedunculata Dehm, 1932. Unlike Rhenocystis, specimens of P. elliottce have not been found in proximity to one another on the same slab surface and, therefore, retrodeformation techniques could not be applied to the Australian taxon. The first variant is more frequently represcnted with elongate, subelliptical to pyriform body outline and usually has markedly elongate plates A and C. In the second, rarer variant the body is only slightly longer than wide, subrectangular; both narginal and central plates of plano-coneave surface are shorter; in particular, A and C are wider than long, subrhomboidal in outline and of equal width. The 2 variants do not seem to be rclated to body size, although some specimens belonging to the lirst category are among the largest known.

ORIGIN AND EVOLUTION OF THE ALLANICYTIDIIDAE

Established by Caster \& Gill (1967) to aecommodate Early Devonian Allauicytidium flemingi from the Reefton Group of New Zealand, the Allanicytidiidae has expanded to now include 7 Southern Hemisphere anomalocystitids (Allanicytidium, Notocarpos. Tasmanicytidinm and Protocytidium from Australia, Placocystella from South Africa and Occultocystis and Anstralocystis from South Ameriea). Philip (1981) reeognised the almost identical plating pattern in Allanicytidium and Notocarpos garratti (Ludlow), although he did not note the lateral orifice plates in the latter taxon and misinterpreted the arrangement of C20 and C22 (Caster, 1983). Caster (1983) provided a diagnosis and revision of the allanieytidiids with his description of Tasmanicytidium burrenti (Llandovery). Haude (1995) modified the diagnosis to include Oceultocystis koeneni (Early Devonian). Prior to discovery of Protocytidium, Occultocystis provided the only link between Late Ordovician mitrate faunas from Laurentia and mid-Palaeozoic mitrates from Gondwana.

FIG 11. Protocytidium elliottae gen. et sp. nov. Inside of plano-concave surface, convex surface, orifice plates and stereom. A, inside of plano-concave surface of NMVP100421, $* 12$. B, partial convex surface of NMVP100400, $\times 12$ C, E, partial convex surface of NMVP100428, $\times 7 . \mathrm{D}$, detail of distal part of Fig. 5C showing inside of orifice plates of NMVP100398, $\times 20$.

FIG. 12. Protocytidium elliothe gen et sp. nov. Reconstruction of internal features of body. A, left DLM and lelt LOP, based on NMVP100401. B, right DLM based on NMVP100418. C, left PLM and left PM, bused on NMVP100393. D, inside of MOP and LOP, reconstructed from NMVP100398, $1004(1), 107(403$ and 100488. E., abapical surface of styloid. based on NMVP1)(1417. Abbreviations as in text. Drawings not to scale,

FIG. 13. Reconstruction of Protocytidium elliotrae gen. et sp. nov, A, plano-concave surface, B, convex surface.
C, right lateral view. D, proximal view (spines omitted). E, distal view (appendage omitted).

Character analysis of the allanicytidiids and relatives was undertaken by Ruta \& Theron (1997). Enoploura is the sister-group to monophyletic Allanicytidiidac (Ruta in press). Ruta \& Theron (1997) assigned Placocystella africana (Reed, 1925) and Anstralocystis langei Caster, 1956 (Early Devonian) to the Allanicytidiidae and recognised that the plano-concave surface of Tasmanicytidium is similar to that of more derived allanicytidiids (Caster, 1983; Ruta, in press).

Mongolocarpos minzlinini Rozhnov, 1990 (Ludlow; Mongolia) is removed from the Allanicytidiidac despite the proximo-distal elongation of plate A . It is here considered a close relative of Placocystites, Rhenocystis and Victoriacystis following Ruta (in press).

ENOPLOURA AND THE ORIGIN OF THE ALLANICYTIDIIDS.

Enoploura popei Caster, 1952 (Fig. 14A) has been described in great detail (Caster, 1952; Parsley, 1991). Its distalmost transverse row of plates on the convex surface has 5 elements as in Barrondeocarpus novegicus Craske \& Jefferies, 1989 and the anomalocystitids Anomalocystites cormutus Hall, 1858, Bokkeveldita oosthuizeni Ruta \& Theron, 1997, Mongolocarpos minzhini Rozhnov, 1990, Placocystites forbesianus de Koninck. 1869, Rhenocystis latipedunculata Dehm, 1932 and Victoriacystis wilkinsi Gill \& Caster, 1960. The lateral plates of the distalmost transverse row in Enoploura overlap the admedian plates as well as the marginal plates just proximal to them (Parsley, 1991). These marginal plates and the 2 large central plates lying medial to them may correspond to C6-C9 in Bokkeveldia, in which the admedian plates of row II, C7 and C8, are relatively large in comparison with other plates of the convex surface, as well as in other anomalocystitids. As an alternative hypothesis, the marginal plates sutured with C20 and C22 and the two large central plates of the convex surface of Enoploura may be homologous with the lateral (C15 and C19) and admedian (C16 and C18) plates of row IV in Bokkeveldia.

Enoploura and Ateleocystites guttenbergensis Kolata \& Jollic, 1982 are similar in configuration of rows II and III in the latter resembling that of the 2 distalmost rows of Enoploura. Thus, Enoploura differs from Ateleocystites in possessing a shortened convex side (Parslcy, 1991) in which the distal, 5-plated row would correspond to row II of Ateleocystites; the row
proximal to it would be homologous to row III of Ateleocystites and the 2 marginal elements in contact with C20 and C2I on the right side and with C2I and C22 on the left side would correspond to the lateral clcments of row IV (C15 and C19) in Accleocystites. Furthermore, the proximo-distal imbrication pattern of the 2 large central plates of Enoploura is similar to that of the admedian elements of row IIl (C11 and C13) in Ateleocystites.

According to Parsley (1991), the body of Enoploura is progenetically shortened in comparison with that of other mitrates. This is an intriguing hypothesis, but it needs to be corroborated by additional fossil evidence. A derivation of Enoploura from taxa with a polyplated convex surface is likely, but not certain. Despite its specialised features (e.g. morphology of the styloid; plate arrangement of the convex surlace), Euoploura retains a primitive skelctal configuration on the plano-concave surface, as indicated by plate B. Such a configuration suggests that this genus probably evolved from an ancestor resembling such Laurentian genera as Areleocystites (Ruta, in press).

PROTOCYTIDIUM: BASAL ALLANICYTIDIID. Skeletal configuration of Proto(y)tidium elliottae (Fig. 14B) invites comparisons with Enoploura and with such basal allanicytidiids as Occultocystis. Affinitics of Protocytidium with the allanicytidiids are suggested by the central plates of the planoconcave surface, especially the proximo-distally elongate plate A , and by the Iongitudinal styloid keel, a semicircular, proximal styloid blade and a proximally recumbent distal blade. The distal 2/3 of C21 is similar in shape and proportions to its homologue in Tasmanicytidium.

However, although plate A is more elongate and narrower than in Notocarpos and is shaped like its homologue in such allanicytidiids as Placocustella. it does not contact left PLM as in all allanicytidiids more derived than Notocarpos (Caster, 1956, 1983: Caster \& Gill, 1967; Ruta \& Theron, 1997; Ruta \& Jell, 1999c; Ruta, in press). Although MOP is longer than LOP, it is not as expanded ransversely as in Notocarpos, Tasmonicytidium, Placocystella, Allanicytidium and Ausiralocystis. Furthermore, both LOP plates are wider proximally than distally and not wedged obliquely between MOP and DLM (MOP and LOP not known in detail in Occultocystis).

A

FIG. 14. Plano-concave (left) and convex (right) surfaces of A, Enoploura popei (redrawn and modified from Parsley, 1991). B, the basal allanicytidiid Protocytidium elliottae. C. convex surface of Occultocystis koeneni (redrawn and modified from Haude, 1995). Drawings not to scalc.

Except for the occurrence of 3 (as in Occultocystis) rather than 5 distal plates, skeletal configuration of the convex surface of Protocytidium differs from that of Enoploura mainly in the relative size and proportion of various plates. The 3 distalmost plates of the
convex surface (especially C3) are larger in Protocytidiulu than in Euoploura but smaller than in Occultocystis. Both in Enoplowra and in Protocytidium LOP and MOP project distal to the body orifice and are divided into proximal and distal parts ('thecal' and 'lip' of Parsley, 1991). Gaps arc present distally between MOP and LOP but they are smaller and more irregular than in Euoploura. The transverse thickening on the internal surface of LOP and MOP is another similarity between Protocytidiuul and Enoploura. More striking resemblances are on the internal side of the plano-concave surface, especially in the asymmetrical development of internal ridges near the latero- distal angles of the left and right DLM.

Plate B , generally regarded as a primitive character for the anomalocystitids (Craske \& Jefferies, 1989; Ruta \& Theron, 1997; Ruta, in press), is much smaller in Protocytidiulu than in Enoploura and other mitrates and appears to be displaced slightly to the left of the longitudinal body axis. Furthermore, B does not contact right LOP and is strongly asymmetrical in outline. C6, C9, C15 and C19 of Enoploura differ from their homologues in Protocytidiun in being much longer than wide. Relative size and proportions of C11, C13 and C21 are similar in both taxa.

The coarscly pitted to labyrinthine stereom in Enoplotura popei (Caster, 1952; Parsley, 1991) is only vaguely reminiscent of the external skeletal texture of Protocytidium. The latter appears to be less coarse presumably as a result of the much smaller body size of Protocytidium, and morc variable both on the surface of single body plates and on different plates. Resemblances between the body stcreom of Enoploura and that of Protocytidium nevertheless occur in the vermicular to ridge-like pattern of C20 and C22 and the lateral body walls.

TRANSITIONAL OCCULTOCYSTIS. in Occultocystis (Fig. 14C), C21 is not as large as in other allanicytidiids and is not interposed betwcen C20 and C22. On both right and left of its convex surface, a plate may occur which is perhaps incompletely fused with C20 and C22 respectively (Haude, 1995). The distal margin of the convex surface consists of 3 plates, of which the median one is narrow and elongate with coneave lateral margins as in Enoplourra. It is likely that the marginal plates sutured along the midline of the convex surface of Occultocystis are homologous with the 2 large central elements of Enoploura.

FIG. 15. Most parsimonius tree resulting from cladistic analysis. Numbers indicate branch lengths.

Plating of the convex side of Occultocystis differs from that of other allanicy tidiids in scyeral details. The transition from this genus to more derived allanicytidiids was probably characterised by the disalppearance of the median clement of the distalmost transverse row and by clongation of C 21 both distally and proximally.

The evolutionary history of more derived allanicytidiids is characterised by remarkably few character changes. most of which pertain to general proportions and relative size of plates of convex surface, skelctal sculpture and appendage morphology (Ruta \& Theron. 1997: Ruta \& Jcll. 1999c; Ruta, in prcss).

PHYLOGENETIC ANALYSIS

Data from a study of interrelationships of the anomalocy stitid mitrates (Ruta, in press) are used
here to cstablish the phylogenctic position of Protocytidium elliottae. Morphological characters are those discussed by Ruta (in press) with coding for Kierocistis inserta Parslcy, 1991 accounting for the reconstruction of the proximal $1 / 3$ of the conven surface proposcd by Parsley (1991: pers. comm., 1997). Some characters of the spines are cntered as polymorphic for Protocyidiull. The matrix includes 24 taxa and 106 binary characters and was analy sed with PAUP Version 3.1.1 on a Power Macintosh $7500 / 100$ using the same hcuristic search settings as detailed by Ruta (in press).
The analysis yielded a single tree (length $=2.30$ stcps: consistency index cxcluding uninformative characters $=0.456$: retention index $=0.68:$ rescalcd consistency index $=0.322$) (Fig. 15). Major differenecs between this tree and the 3 equally parsimonious solutions found by Ruta (in press) are: 1) Barrandeocarpus jaekeli Ubaghs. 1979 and B. norvegicus Craske \& Jefferics. 1989 are sister taxa and. together. form the sister-group of Ateleocystites guttenhergensis Kolata \& Jollie. 1982: 2) Kierocistis inserta Parslcy: I991 and Diamphidiocystis drepanon Kolata \& Guensburg. 1979 are suceessively more closcly rclated to the remaining ingroup taxa.
Protocyidium occupies an intermediate position between Enoploura popei Caster. 1952 and the Allanieytidiidae as defined by Hande (1995) and Ruta (in press), thus confirming the transitional nature of scicral of its features. The following characters, all showing state change $0-1$ numbered in the same order as they appear in the data matrix (Ruta in press) and accompanied by their consistency index (ci) values. support the sister-group relationship between Protocytidium and the Allanieytidiidae under the accelerated character-state transformation (character changes are placed as close to the root of the tree as possible. thus emphasising reversals): 21 ($\mathrm{ci}=1$), plate MOP longer than each of the 2 plates LOP: 30 (ci=0.333). spine length greater than
length of distal margin of plano-concave surface; 87 (ci=0.25), 3 plates along distalmost margin of convex surface; 90 ($\mathrm{ci}=1$), interior of distal margin of convex surface with transverse thickening with asymmetrical cross-section; 97 ($\mathrm{ci}=1$), distal styloid blade inclined proximally; 99 (ci=0.25), a sharp, longitudinal keel on external surface of styloid; $102(\mathrm{ci}=1)$, proximal styloid blade semicircular in outline. With the exception of characters 30,87 and 99, the other characters are uniquely derived features of the clade (Protacytidium elliottae + remaining Allanicytididae). When the delayed characterstate transformation is used (character changes are placed as far from the root of the tree as possible, thus emphasising parallelisms), the clade comprising Protocytidium elliottae and the remaining Allanicytididae is supported by state changes relative to characters $21,30,97,102$ as well as by character 53 (ci=0.25), absence of overlapping elements on convex surface. From this pattern of character distribution, it is possible to highlight the major changes during allanicytidid evolution.
Modifications of the plano-concave surface include: teduction in size and subsequent loss of B ; proximo-distal elongation of A and subsequent interposition of it between C and left lateral marginal DLM, ILM and PLM; narrowing and acquisition of oblique orientation of right and left LOP, which became wedged hetween MOP and right and left DLM, respectively; widening of MOP; acquisition of flexible articulation between orifice plates and adjacent plates of plano-concave surface.
Modifications of the convex surface include: reduction of distal row of plates from 5 to 3 to 2 elements; great expansion of C21; arrangement of marginal plates in 4 sets of paired elements Surrounding C21: projection of most distal pair of plates beyond distal margins of LOP and MOP.
Modifications of the appendage include: reduction in number of tetramerous rings; acquisition of semicircular outline of free margin of proximal styloid blade; proximally recumbent position of distal styloid blades lateral ear-like projections of distal blade.

CONCLUSIONS

The diverse mitrate fauna of Australasia is entiched by addition of the latest Ordovician anomalocystitid Prorocytidium elliottac: Spine morphology, external stereom texture and skelctal configuration of body plates distinguish
this mitrate from other anomalocystituds. Character analysis indicates that Protocyidium is the most primitive member of the Allanicytidiidae. Character distribution patterns and comparison of this genus with Enoploura and OccuItocystis suggest scveral skeletal modifications in evolution of the allanicytidids including: 1) simplification of the convex surface plating through loss of plates: 2) modification of the orifice plates to form a tlexibly artioulated structure; 3) inerease in the degree of bilateral symmetry of the body: 4) loss of plate B; 5) proximo-distal elongation of plate A; and 6) lateral expansions of distal styloid blade.

ACKNOWLEDGEMENTS

Lan Stewart and Fons Vandenberg helped collect the material described herein. A. R. Milner (Birkbeck College, University of London), A.C. Milner, S.I, Culver and L.R.M. Cocks (Natural History Museum, London) tead the manuscript. P. Crabb (Natural History Museum, London) photographed the specimens. B. Lefebyre and Ron Parsley provided useful information. We are grateful to the reviewers, Ron Parsley and Jim Sprinkle for their helpful suggestions and vouch that the authors alone are responsible for the above. A European Community grant (Training and Mobility of Researchers) enabled MR to visit the Queensland Museam (Brisbane) and the Muscum of Vicioria (Melbourne), whose stafl are thanked for their hospitality.

LITERATURE CITED

CASTER, K.E. 1952 Concerning Enoplowra of the Upper Ordovician and is relation to other carpoid Echinodermata. Bulletins of Amertion Paleontology 34: 1-47.
1956. A Devonian placocystoid echinuderm from Parana, Brazil Paleontologia do Paranáa (Centennial Volume) $137-148$.
1983. A new Silurian carpoid echinoderm from Tasmania and a revision of the Allanicytidhdate. Alcheringa 7: 321-335.
CASTER, K.E. \& GILL. E.D. 1967. Family Allanicytidudae, new lamily. Pp. S56l-S564. In: Moorc, R.C. (ed.) Treatise on invertebrate paleontology. Part S. Echinodermata $1(2)$. (Geological Suciety of America \& University of Kansas: New York).
CRASKE, A.I. \& JEFFERIES. R.PS. 1989. A new mitrate from the Upper Ondovician of Norway, and a new approach to subdividing a plesion. Palaeontology 32: 69-99.
DEHM, R. 1932. Cystoideen aus dem rheinischen Uuterdevons. Neues Jahrbuch für Mineralogie, Geologie und Palainotologie Beilage-Band, Abteilung A 9: 63-93.

GILL, E.D. \& CASTER, K.E. 1960. Carmoid chinoderms from the Siluman and Devomian of Ausiraha. Bulletins of American Palemololngy 41: 5-71.
HALL, I. 1858. Scientific intelligence, 11. geology, 4. Crimoids of New York. American Journal of Science and Arts 25: 277-279.
HAUDE, R. 1995. Echinodermen aus dem Unter-Devon der argentimischen Präkordillere. Nenes Jalurbuch fïr Geologie und Paläontologic, Abhandlungen 197: 37-86.
JAEKLL, O. 1918. Phylogenie und System der Pelmatozoen. Paläontologische Zeíschrift 3: $1-128$.
KOLATA. D.R. \& GUENSBURG, T.E. 1979. Diamphiditicystis, a new mutrate carpoid from the Cincinnatian (Upper Ordovician) Maquoketa Group in southern Illinois. Jownal of Palcontology 53: 1121-1135.
KOLATA, D.R. \& JOLLIE, M. 1982. Anomalocystitid mitrates (Stylophora, Echinodermata) from the Champlainian (Middle Ordovician) (iuttenberg Formation of the Upper Mississippi Valley Region. Joumal of Pateontology 56: 531-565.
KONINCK, M.I. de. 1869. Sur quelques Fehnodermes remarquables des terrains paléozoiques. Bulletin de l'Academie Royale des Scínces Belgique 28: 54-552.
PARSLEY' R.L. 1901. Review of selected North American mitrate stylophotans (Homalozoa: Eehinodermata), Bulletins of American Palcontulogy 100: 5-57.
PIILIP: GM. 1981. Nototarpos yarrahi gen. et sp. nov., a new Siluriam mitrate carpoid fron Victoria. Alcheringa 5: 29-38.
REED. F.R.C. 1925. Revision of the fauna of the Bokkeveld beds. Annals of the South African Muscum 22: 27-226.
ROLHNOV. S.V. 1990. New represchatives of the class Stylophora (Echinodermata). Paleontological Jownal 24: 34-45.

RUTA, M. in press. A cladistic analysis of the anomalocystitid mitrates. The Zoologieal Journal of the Linnean Society.
RUTA, M. \& B \wedge RTFLS, \bar{C}. 1998 . A redescription of the anomalocystitid mitrate Rhenocpsis latipedmucrlata from the Lower Devonian of Germany. Palacontology 41: 771-806.
RUTA, M. \& IELL P. A. 199)a, Adoketncarpus gen. nov, a mitrate from the Ludlovan Kilmore Siltstone and Lochkowian Humevalc Fomnation of central Victoria. Memoirs of the Quecnsland Muscum 43: 377-398
1999b. Two new anomalocystitid mitrates from the Lower Devonian If umevale Formation of central Victoria. Memoirs of the Queensland Musemm 43: 399-422.
1999c. Revision of Silurian and Devonian Allanicytidiidac (Anomalocystitida, Mitrata) from southeastern Australia, Tammania and New Zealand. Memoirs of the Qucensland Museum 43: 431-451.
RUTA, M. \& THERON JN. 1997. Two Devonian mitrates from South Africa. Palaeontology 40: 201-243.
UBAGHS, G. 1967. Stylophora. Pp. S496-S565. In: Moore, R.C. (ed.) Treatise on inveriebrate paleontology. Part S. Echinodernata I(2). (Geological Sucicty of America \& University of Kansas: New York).
1979. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovicien de Tchécoslovaquic. Paläontologische Zeitschrift 53: 98-119.
VANIIENBERC A.11.M. 1992. Kilmore 1:50,000 map and genlogical report. Ceological Survey ol Victoria Report 91: 1-86, + map.
VANDENIBERG, AHM., RICKARDS, R.B. \& 11OLLOWAY, D.J. 1984. The OrdovicianSilurian boundary at Darraweit Guinn, central Victoria. Alcheringas: 1.22.
WF:TIIFRBY. A. (i. 1879. Description of a new fanily and genus of Lower Silurian Crustacea. Journal of the Cincinnati Society of Natural History I: 162-166.

APPENDIX

Through this and the following 4 papers by the same authors referencc is made to a system of plate nomenclature proposed in a paper by the senior author that remains in press with The Zoological Journal of the Linnean Society of London (Ruta, in press). To facilitate the use of this nomenclature in the papers published in this volume a key to that plate notation is provided below.
Plating of the convex surface is shown on the lefthand diagram and of the plano-concave surfacc on the right. The convex surface is based on the maximum regular plating known which occurs in the South African Bokkeveldia oosthuizeni Ruta \& Theron, 1997. This terminology has been developed to avoid entirely any implied interpretation of orientation or function and although no thanks may be forthcoming for introducing another terminology in an already contentious area we believe use of
terminology which removes all interpretation is desirable and should be of benefit to the enduring arguments surrounding thesc animals.

The following abbreviations arc employed on the figure:- On the convex surface 'c' prefix is for convex and equates to the ' v ' for ventral used by Ruta \& Theron (1997).
On the plano-concave surfacc
$\mathrm{PM}=$ proximal marginal plates
PLM $=$ proximal lateral marginal plates
1LM = intermediate lateral marginal plates
DLM $=$ distal lateral marginal plates
LOP $=$ lateral orifice plates
MOP = median orifice plate
Central plates:-
A = anomalocystid plate
$\mathrm{B}=$ second asymmetrical plate of some genera
$\mathrm{C}=$ largest central plate

